Planning of mobile assistant units in assembly lines for performing material supply operations ERF 2016, March 21, 2016, Ljubljana

Mrs. Niki Kousi

Laboratory for Manufacturing Systems and Automation University of Patras Greece

Contents

- □ EU FP7 ROBO-PARTNER Intelligent Intralogistics concept
- □ Modelling of planning of supply materials operation problem
- □ Formulation into a search problem
- □ Planning rules & performance criteria
- □ Case study
- **Conclusions and Outlook**
- □ Acknowledgments

Intelligent Intralogistics Concept

□ Intralogistics Mobile Assistant Units (IMAUs)

https://www.youtube.com/watch?v=Tkt11FZYH00

Laboratory for Manufacturing Systems and Automation

Planning of material supply operation

□ Task alternatives example:

4

*G. Michalos, K. Kaltsoukalas, P. Aivaliotis, P. Sipsas, A. Sardelis, G. Chryssolouris, "Design and simulation of assembly systems with mobile robots", CIRP Annals-Manufacturing Technology, Available Online 2014

Laboratory for Manufacturing Systems and Automation

Formulation of search problem

- Node of a tree ► Group of tasks to be performed by the MAU
- Branch of tree **>** Complete schedule (tasks alternative)
- Operations precedence relations are satisfied

5

MAUs suitability constraints define candidate resources for each task

*G. Michalos, P. Sipsas, S. Makris, G. Chryssolouris, "Decision making logic for flexible assembly lines reconfiguration", Laboratory for Manufacturing Robotics and Computer-Integrated Manufacturing, Available Online (2015)

**G. Michalos, S. Makris, D. Mourtzis, "An intelligent search algorithm-based method to derive assembly line design alternatives", International Journal of Computer Integrated Manufacturing, Volume 25, No.3, pp.211-229(2012)

Systems and Automation

Planning Rules & Performance criteria

Planning rules:

- **Generation** Remaining Cycles for part depletion (RC)
 - Represents the cycles that each box can serve before its depletion
 - ✓ Critical Remaining Cycles (CRC) threshold
- □ Planning Horizon (PH)
 - ✓ Integer value 1 to max number for boxes that the MAU can carry simultaneously
 - ✓ Checks if the MAU should wait for the next box to get under the threshold

Performance criteria:

- Distance travelled from the MAU for each alternative
- Time Required for transportation (tt)

Case study

Rear wheel assembly line:

- □ 4 Product variants
- \Box 4 Stations 1.5 min cycle time / station
- □ 18 different consumable boxes
- □ 4 market areas

Rear Wheel group assembly line*

System Implementation Architecture:

Results:	РН	Parts entered	Production Volume	No of MAU transportation	No. of Rejections	Part depletion
	PH = 1	1200 1200	995	56	205	28
	PH = 3		1052	41	148	12
						Laboratory for M

Conclusions and Outlook

Conclusions:

- □ Tailor the **characteristics of different MAUs** (number of shelves, dimensions) through the PH variable
- □ Adjust **the decision making process** in order for the multiple variants (e.g. number of boxes) to be considered by the PH variable
- Achieve a higher production volume of the system,
- **Reduce part depletion** occurrences and
- **Reduce the MAU's travelling distance**, leading to an increased utilization of these resources and to a reduction in the idle time.

Outlook:

- ☐ Implementation of **intelligent search algorithms**
- **Integration** of planning algorithm with **MAUs control** system
- **Connection** with **shop floor** monitoring systems

Niki Kousi, George Michalos, Sotiris Makris, George Chryssolouris, "Short – term planning for part supply in assembly lines using mobile robots", 6th CIRP Conference on Assembly Technologies and Systems (CATS) – Accepted for publication

Laboratory for Manufacturing Systems and Automation

Acknowledgements

This research has been partially supported by the research EU FP7 project "ROBO-PARTNER – Seamless Human-Robot Cooperation for Intelligent, Flexible and Safe Operations in the Assembly Factories of the Future" (Grant no. 608855) funded by the European Commission.

THANK YOU!

Laboratory for Manufacturing Systems and Automation University of Patras Tel: +30-2610-997262

www.lms.mech.upatras.gr

kousi@lms.mech.upatras.gr